
CPM M4

Aço Rápido de Alta Performance por Metalurgia do Pó

O Aço CPM M4 é um aço rápido de alto vanádio para fins especiais que apresenta resistência ao desgaste e tenacidade superiores aos aços M2 e M3 em punções para trabalho a a frio, insertos de moldes e aplicações que envolvam cortes de precisão em alta velocidade. Em relação ao aço M4 convencional, ele tem um teor de carbono mais alto, de forma a apresentar uma alta resposta ao endurecimento para ferramentas de seção mais espessa ou em tratamentos à vácuo ou atmosfera.

O Aço CPM M4 pode ser usado no lugar dos aços convencionais D2 e D6 para operações a frio.

Aço Tradicional

convencionais

Aco CPM O processo CPM, exclusivo da Crucible-USA produz uma microestrutura homogênea e com caracterisitcas mecânicas únicas, quando comparados com o aços

Gráfico Comparativo - Aços Rápidos 131 M35 M42

Aplicações Típicas

- Fresas de Topo
- Fresas Caracol
- Bites

M2

- Ferramentas para Conformação
- Brochas
- Ferramentas para corte fino
- Brocas
- Machos
- Fresas Circulares

Central de Distribuição Rua José Antônio Valadares, 285 Vila Livieiro - São Paulo - SP Tel: (11) 2083-9000 Fax: (11) 2083-9002

Filial Joinville Rua Tenente Antonio João 750 Bom Retiro - Joinville - SC Tel: (47) 3435-1731 Fax: (47) 3435-1741

SCHMOLZ + BICKENBACH

Providing special steel solutions

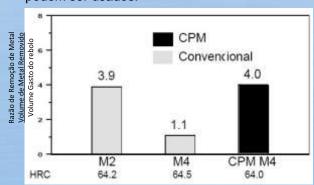
Composição Química

Carbono	Cromo	Vanádio	Tungstenio	Molibdenio
1,40%	4,00%	4,00%	5,50%	5,25%

Manganês: 0,30% (0,70%)*

Enxofre: 0,06% (0,22%)*

* Em grandes diâmetros é favorável a adição dos elementos manganês e enxofre visando favorecer a formação de inclusões do tipo sulfeto de manganês que melhoram a usinabilidade, sem efeitos negativos à tenacidade, resultado da uniforme distribuição destas inclusões obtidas pelo processo CPM.


Propriedades físicas

Módulo de Elasticidade	214.000 MPa	
Densidade	7,97 g/cm ³	
Condutividade Térmica (300°C)	23,96 W/m.K	
Coefic. Expansão Térmica (40 – 540 °C)	12,1x10-6 (mm/mm/°C)	

Dureza após recozimento: 225 a 255 HB

Usinabilidade: condição recozida. na а usinabilidade do **CPM** Rex M4 aproximadamente 45% de um aco-ferramenta W1 (1% C), podendo chegar a 75% em barras redondas de 65 mm de diâmetro ou maiores, devido a adição de manganês e enxofre.

Retificabilidade: devido a distribuição regular de carbonetos a retificabilidade do CPM Rex M4 é comparada favoravelmente com os acos rápidos convencionais. assim, Sendo os projetados para acos rápidos convencionais podem ser usados.

Filial Caxias Rua Giusepe Formolo 400 Cruzeiro - Caxias do Sul - RS Tel: (54) 3212-1300 Fax: (54)3 212-1214

Representante MG **Proaços Service** Av. Babita Camargos, 135 - Bairro Industrial - Contagem - MG Tel: (31) 3362-9999

Tratamentos Térmicos

Dados importantes:

a) Temperatura Crítica: 840 °C

b) Forjamento: entre 1095 e 1150 °C. Não forjar abaixo de 930 °C. Resfriamento lento.

Indicações de tratamento térmicos:

a) Recozimento: Aquecer até 870 °C, manter por 2 horas, resfriar lentamente (15 °C por hora) até 540 °C, seguido de resfriamento no forno ou ao ar calmo até a temperatura ambiente. Dureza esperada: entre 225 e 255 HB

b) Alivio de Tensões:

- Peças Recozidas: aquecer entre 595 e 700 °C, manter por 2 horas e resfriar em forno frio ou em ar calmo;
- <u>Peças Temperadas</u>: aquecer até 15 °C abaixo da última temperatura de revenimento, manter por 2 horas, resfriar em forno frio ou em ar calmo:
- Desempenamento: ideal entre 200 e 430 °C.

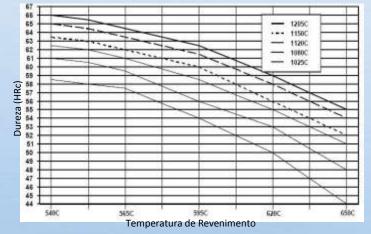
c) Têmpera e Revenimento

- <u>Pré-aquecimento</u>: aquecer entre 820 e 845 °C e equalizar. Segundo pré-aquecimento entre 1010 e 1040 °C para tratamento à vácuo ou em atmosfera.
- Austenitização: entre 1025 e 1205 °C, manter entre 5 a 45 minutos (veja a tabela "Resposta ao Tratamento Térmico", ao lado). Para ferramentas de corte use entre 1175 e 1205 °C. Para aplicações a frio use entre 1025 e 1160 °C.
- · Resfriamento: em ar ou sob pressão (2 bar minímo) até abaixo de 50 °C ou banho de sal ou óleo à 540 °C, seguindo de resfriamento ao ar até abaixo de 50 °C.

Notas: 1-) O resfriamento em banho de sal (martêmpera) assegurará a máxima tenacidade. 2-) Em fornos a vácuo e atmosfera o resfriamento deve ser rápido visto que a faixa de temperatura entre 1010 e 705 °C propicia a precipitação de carbonetos pro-eutetóides nos contornos de grãos, que torna o aço frágil e ocasiona queda na dureza objetivada.

- Revenimento: É requerido o duplo revenimento à 540 °C (2 h no minimo por revenimento). Recomenda-se 3 revenimentos para temperaturas de austenitização superiores à 1150 °C. Resfriamento em ar calmo.
- · Dilatação esperada: +0,15 %

d) Tratamento Superficial


Por causa das altas temperaturas de revenimento (superiores a 540 °C), o aço CPM M4 pode ser revestido (nitretação, PVD ou similar). Os revestimentos CVD geralmente excedem a temperatura crítica e pode causar distorções dimensionais não previsíveis.

Resposta ao Tratamento Térmico

Dureza HRC						
Temp.	Temperatura de Austenitização (°C)					
Rev. (°C)	1025	1080	1120	1150	1175	1205
Pós-temp.	59,5	62,5	64,5	65	65	63,5
540 °C	58,5	61	62,5	63,5	65	66
	Ótimo para Má	axima Tenacida	ade e um Efet	ivo Alivio de	Tensões	
550 °C	58	60,5	62	63	64,5	65,5
565 °C	57,5	59,5	61	62	63,5	64,5
595 °C	54	56	58,5	60	61,5	62,5
620 °C	50	53	55	56	58	59
650 °C	44	48	51	52	54	55

Os resultados podem variar em função do método de têmpera e o tamanho da seção. Banho de sal ou têmpera em óleo darão a máxima resposta. Vácuo ou resfriamento em atmosfera, 1 a 2 pontos HRc para menos

Tempo mín. na Temp. Austenit.	45 min.	30 min.	20 min.	15 min.	10 min.	5 min.
No. Revenim. Mínimos	2	2	2	3	3	3

Tenacidade

Dependendo da dureza requerida, quanto menor a temperatura de austenitização, maior será a tenacidade

Temp. Austenit.	Temp. Revenim.	Dureza (HRc)	Tenacidade (J)	Resist. Flexão (Mpa)
1205 °C	550 °C	65,5	27	5088
1165 °C	565 °C	63,5	38	5129

Nota: as propriedades mostradas nas tabelas são valores típicos. Variações normais devidas às variáveis de processo podem causar desvios nesses valores. Para qualquer esclarecimento consulte o Depto. Técnico da SCHMOLZ+BICKENBACH.